

Journal of Fluorine Chemistry 71 (1995) 213-214

Experimental and theoretical research towards $R_fNCl_3^+$ cations, where $R_f = CF_3$, SF_5 , FC(O) and F

Jian Sun, Joseph S. Thrasher *

Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA

Keywords: Substituted trichloroammonium cations; Ab initio MO methods; NMR spectroscopy; Infrared spectroscopy; Raman spectroscopy; Oxidative chlorination

1. Introduction

Our group first proposed the synthesis of the R_fNCl₃⁺ MF₆⁻ salts (M=As, Sb) from the reaction of the dichloroamines R_fNCl₂ with ClF and MF₅ several years ago. While our studies were underway, Minkwitz and coworkers reported the synthesis of the salts NCl₄⁺ AsF₆⁻ [1] and (CH₃)_nNCl_{4-n}⁺ MF₆⁻ (n=1-3; M=As, Sb) [2] from the chlorination of NCl₃ and (CH₃)_nNCl_{3-n} with Cl₂/AsF₅ (or SbF₅). We have subsequently synthesized CF₃NCl₃⁺ AsF₆⁻ by both routes [3]. More recently, Minkwitz and coworkers have stated that the reaction between CF₃NCl₂, Cl₂, and AsF₅ does not yield CF₃NCl₃⁺ AsF₆⁻; however, one is led to believe that these workers used SO₂ as a solvent in their reaction, although little detail about reaction conditions was given [4].

2. Experimental details

Caution! Many N-halo compounds are known to be powerful explosives; therefore, suitable safety precautions should be kept in mind. We advise that the preparations and reactions of these materials be undertaken on a small scale.

In a typical reaction, AsF_5 and the respective dichloroamine R_fNCl_2 were reacted stoichiometrically with either Cl_2 (0.5 mmol) or ClF (3 mmol). The starting materials were condensed in an FEP tube reactor in the order given by successively lowering the level of the reactor in a Dewar containing liquid nitrogen. The reaction mixture was slowly warmed to -78 °C and placed in a slush bath at -78 °C for either 24 h (Cl_2 oxidant) or 12 h (Cl_2 oxidant). The component volatile at -78 °C was then dynamically pumped from the

reactor to a cold trap (-196 °C) until a constant weight was achieved. Fine white solids (70%–96% yield) remained in the reactor.

3. Results and discussion

The formation of the $R_fNCl_3^+$ AsF_6^- [$R_f = CF_3$, SF_5 , FC(O)] salts occurs in high yield by reaction of the dichloroamine R_fNCl_2 with either Cl_2/AsF_5 or ClF/AsF_5 as shown in Eqs. (1) and (2).

$$2R_tNCl_2 + Cl_2 + 3AsF_5 \xrightarrow{-78 \text{ °C}}$$

$$2R_{t}NCl_{3}^{+}AsF_{6}^{-}+AsF_{3}$$
 (1)

$$R_fNCl_2 + ClF + AsF_5 \xrightarrow{-78 \text{ °C}} R_fNCl_3^+ AsF_6^-$$
 (2)

Support for the production of the same salts via the different chlorination routes came from identical Raman and $^{19}\mathrm{F}$ NMR spectra. Longer reaction times were required for the reactions with $\mathrm{Cl_2/AsF_5}$ and the yields were somewhat higher. Excess $\mathrm{Cl_2}$ and/or higher reaction temperatures for reaction (1) led to the impurity $\mathrm{AsCl_4}^+$ $\mathrm{AsF_6}^-$. The existence of $\mathrm{AsF_3}$ as a by-product in reaction (1) was supported by infrared spectroscopy.

All of the $R_fNCl_3^+$ AsF_6^- [$R_f=CF_3$, SF_5 , FC(O)] salts are sensitive to moisture, while the $SF_5NCl_3^+$ AsF_6^- salt is the most thermally stable. It decomposed slowly at room temperature over a few days (Raman). To date, our attempts to prepare $FNCl_3^+$ AsF_6^- have resulted only in explosions. The ¹⁹F NMR spectra of the $R_fNCl_3^+$ AsF_6^- [$R_f=CF_3$, SF_5 , FC(O)] salts were consistent with the proposed structures; CD_3CN was used as solvent and CCl_3F as external reference. A comparison of these spectra with those of the starting dichloroamines was informative. Although we were unsuccessful in obtaining a ¹³C NMR spectrum of the $CF_3NCl_3^+$ AsF_6^- salt, the J_{C-F} coupling constant was determined as 264 Hz from ¹³C satellites in the ¹⁹F

^{*} Corresponding author.

NMR spectrum. In contrast, the 13 C NMR spectrum of FC(O)NCl₃⁺ AsF₆⁻ could be recorded and the J_{C-F} coupling constant measured as 300 Hz. The CF₃NCl₃⁺ AsF₆⁻ salt was also found to decompose in SO₂, either when monitored by 19 F NMR spectroscopy or when attempts were made to grow single crystals. The observed instability of CF₃NCl₃⁺ AsF₆⁻ in SO₂ certainly explains the inability of Minkwitz and coworkers to observe the same product in their reaction [4].

The calculated vibrational frequencies (MP2/6-31G*) of the dichloroamines R_tNCl_2 [$R_t=CF_3$, FC(O) and F] matched the infrared and Raman data very well when a scaling factor of 0.95 was used; for SF_5NCl_2 a scaling factor of 0.88 was appropriate at the HF/6-31G* level. The calculated vibrational frequencies (MP2/6-31G*) of the R_tNCl_3 ⁺ cations [$R_t=CF_3$, FC(O)] matched the infrared and Raman spectra quite well when scaled appropriately, as did the calculated vibrational fre-

quencies of the SF₅NCl₃⁺ cation at the HF/6-31G* level.

Acknowledgment

The authors sincerely thank Dr. K.O. Christe for his suggestions early on in this research project.

References

- [1] R. Minkwitz, D. Bernstein and W. Sawodny, Angew. Chem., Int. Ed. Engl., 29 (1990) 181.
- [2] R. Minkwitz, D. Bernstein and P. Sartori, Z. Anorg. Allg. Chem., 595 (1991) 183.
- [3] J. Sun and J.S. Thrasher, Presented at the 22nd Southeastern Theor. Chem. Assoc. Conf., Raleigh, NC, May 1993, Poster 25.
- [4] R. Minkwitz, D. Lamek, M. Korn and H. Oberhammer, Z. Anorg. Allg. Chem., 619 (1993) 2066.